Chapter 11

Parametric Equations and
Polar Coordinates



11.1

Parametrizations of Plane Curves
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Position of particle

at time ¢ T (f(1), g(0)

FIGURE 11.1 The curve or path traced
by a particle moving in the xy-plane is
not always the graph of a function or
single equation.
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DEFINITION  Ifx and y are given as functions

x=f(t), y=g

over an interval  of t-values, then the set of points (x, y) = (f(¢), g(¢)) defined by
these equations is a parametric curve. The equations are parametric equations

for the curve.
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TABLE 11.1 Values of
x=tandy =t + 1 for
selected values of t.
t X y
-3 9 -2
-2 4 -1
—1 1 0
0 0 1
1 1 2
2 4 3
3 9 4

Copyright © 2010 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Slide 11- 5



FIGURE 11.2 The curve given by the
parametric equations x = t*and y = ¢ + 1
(Example 1).
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Foail

x2+y?2=1

| P(cost, sint)

FIGURE 11.3 The equations x = cos ¢
and y = sin ¢t describe motion on the circle
x? + y? = 1. The arrow shows the

direction of increasing ¢ (Example 3).
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0| Starts at
tr=20

FIGURE 11.4 The equations x = V¢
and y = ¢ and the interval 1 = 0 describe
the path of a particle that traces the right-
hand half of the parabola y = x?
(Example 4).
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> X

FIGURE 11.5 The path defined by
X=1ty= %, —00 < t < 00 is the entire
parabola y = x? (Example 5).
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TABLE 11.2 Values of x =t + (1/t)
and y =t — (1/t) for selected
values of t.
t 1/t X y
0.1 10.0 10.1 —9.9
0.2 5.0 5.2 —4.8
0.4 2.5 2.9 —2.1
1.0 1.0 2.0 0.0
2.0 0.5 2.5 1.5
5.0 0.2 5.2 4.8
10.0 0.1 10.1 9.9
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r=10

10
,/('10.1, 9.9)

(10.1,-9.9)
~

t=0.1

FIGURE 11.6 The curve forx = ¢t + (1/¢),
y =1t — (1/t),t > 0in Example 7. (The
part shown is for 0.1 = ¢ = 10.)
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Guard Guard
cycloid cycloid

® . CyCIOid . *

FIGURE 11.7 In Huygens’ pendulum
clock, the bob swings in a cycloid, so the
frequency 1s independent of the amplitude.
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> =

P(x,y) = (at + acos 0, a + a sin 0)

at

As

0

FIGURE 11.8 The position of P(x, y) on
the rolling wheel at angle ¢ (Example 8).
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> =

O 2ma

FIGURE 11.9 The cycloid curve
x = a(t — sint),y = a(l — cost), for
t=0.
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0 a 2a mwa 2ma
| I | I [ [ > X
P(at — asint,a — acost)
a e
2a -
B(am, 2a)

Y
y

FIGURE 11.10 To study motion along an
upside-down cycloid under the influence
of gravity, we turn Figure 11.9 upside
down. This points the y-axis in the
direction of the gravitational force and
makes the downward y-coordinates
positive. The equations and parameter
interval for the cycloid are still

x = a(t — sint),
y =a(l —cost), t=0.

The arrow shows the direction of
increasing .
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FIGURE 11.11 Beads released
simultaneously on the upside-down cycloid
at O, A, and C will reach B at the same time.
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11.2

Calculus with Parametric Curves
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Parametric Formula for dy /dx
If all three derivatives exist and dx/dt # 0,
dy  dy/dt
dx " djdi 1)
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Parametric Formula for d?%y /dx”

If the equations x = f(¢), y = g(t) define y as a twice-differentiable function of
x, then at any point where dx/dt # 0 and y' = dy/dx,

d_zy _dy'/dt )
dx?  dx/dt” (@)
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/ X =sect,y=tant,

ar ar
~ T <t
2 2

FIGURE 11.12 The curve in Example 1
1s the right-hand branch of the hyperbola
x? — y2 = 1.
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Figure 11.13 The astroid in Example 3.
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FIGURE 11.14 The smooth curve C defined
parametrically by the equations x = f(¢) and
y = g(t),a = t = b.The length of the
curve from 4 to B is approximated by the
sum of the lengths of the polygonal path
(straight line segments) starting at A = Py,
then to Py, and so on, ending at B = P,,.
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> =

P, = (f(1), g(tp)

Py = (f(te_1), 8(tx_1))

> X

FIGURE 11.15 The arc Py Py 1s
approximated by the straight line segment
shown here, which has length

Ly = V(Ax)® + (Ay)’.
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DEFINITION If a curve C is defined parametrically by x = f(¢) and
y = g(t),a =t = b, where f' and g’ are continuous and not simultaneously

zero on [a, b], and C is traversed exactly once as ¢ increases from ¢ = atot = b,
then the length of C is the definite integral

b
L= / VIFOF + 8O di
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>

B(0, 1)
AN xX,y) = (cos? t, sin’ 1)

<
X \

FIGURE 11.16 The centroid (c.m.)
of the astroid arc in Example 6.
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Area of Surface of Revolution for Parametrized Curves

If a smooth curve x = f(¢),y = g(¢t),a = t = b, is traversed exactly once as ¢
increases from a to b, then the areas of the surfaces generated by revolving the

curve about the coordinate axes are as follows.

1. Revolution about the x-axis (y = 0):

b 2 2
_ dx &
o= [T - )

(5)
2. Revolution about the y-axis (x = 0):
b 2 2
_ dx dy
S—/a Zﬁx\/(dt) + (dt) di (6)
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Circle y
= COoS t

y=1+sint

O=t=27

FIGURE 11.17 In Example 7 we calculate
the area of the surface of revolution swept
out by this parametrized curve.
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11.3

Polar Coordinates
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P(r, 0)
r
Origin (pole)
\ 0
(0] > X

Initial ray

FIGURE 11.18 To define polar
coordinates for the plane, we start with an
origin, called the pole, and an initial ray.
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Polar Coordinates

Directed distance
from O to P

P(r,0)

Directed angle from
initial ray to OP
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> X

Initial ray
0=0

FIGURE 11.19 Polar coordinates are not
unique.
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P2 %)=r(>5)

FIGURE 11.20 Polar coordinates can
have negative r-values.
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”r > X
Initial ray

~57/6

FIGURE 11.21 The point P(2, 7r/6) has
infinitely many polar coordinate pairs
(Example 1).
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FIGURE 11.22 The polar equation for a
circleis » = a.
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Equation Graph
r=a Circle of radius |a | centered at O
0 = 0 Line through O making an angle 6, with the initial ray
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(a) y
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NI

of 1 2
(b) y )
DT
1
2 T -3sr=2
4 > X
’ >
3
© T
Bk T ™
T\ |Foe
> . FIGURE 11.23 The graphs of typical
inequalities in » and 6 (Example 3).
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> <

_ T
Ray9—2

Common
origin \
0

P(x,y) = P(r, 0)

.
Yy

0 [ 0 =‘ 9’ r=0 > X

X Initial ray

FIGURE 11.24 The usual way to relate
polar and Cartesian coordinates.
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Equations Relating Polar and Cartesian Coordinates

_ o 2 _ 2 2 _J
x =rcosf, y=rsinh, r°=x"+y°, tanh =73
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EXAMPLE 4  Here are some equivalent equations expressed in terms of both polar
coordinates and Cartesian coordinates.

Polar equation Cartesian equivalent
rcosf =2 x =2
r?cosfsinf = 4 xy = 4
r?cos’ — r’sin° 9 = 1 x? =y =1
r=1+ 2rcos6 yrP—=3x—4x—1=
r=1—cosf Pyt 27+ 2 + 207 — 2 =0

Some curves are more simply expressed with polar coordinates; others are not.
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r

X+ (y—37=9
or
r=6siné6

0,3)e

> X

FIGURE 11.25 The circle in Example 5.
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11.6

Graphing in Polar Coordinates
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Symmetry Tests for Polar Graphs

1. Symmetry about the x-axis: If the point (, 6) lies on the graph, then the point
(r, —0) or (—r, ™ — 0) lies on the graph (Figure 11.26a).

2. Symmetry about the y-axis: If the point (, 6) lies on the graph, then the point
(r, m — 6) or (—r, —0) lies on the graph (Figure 11.26b).

3. Symmetry about the origin: If the point (7, 6) lies on the graph, then the point
(—r,0) or (r, @ + ) lies on the graph (Figure 11.26¢).
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(r,m—0)
or (_rs _9) (ra 9)
y
A
(r, )
| > X
| 0
|
' > X
0 |
|
|
(r, ~0) (b) About the y-axis
or (—r, ™ — 0)
(a) About the x-axis y
3
(r, 6)

FIGURE 11.26 Three tests for
symmetry in polar coordinates.

A 4

(=r,@)or(r,0 + m
(c) About the origin

Copyright © 2010 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Slide 11 - 43



Slope of the Curve r = f(6)
dy
dx (r, 0)

provided dx/df # 0 at (r, 6).

_ f'(0)sin6 + f(6)cos b
" f'(8)cos6 — f(6)sinb’
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O |r=1-—-cosf (Q, 277)})
2 3 A
0 0 r=1-—-coséf
m | 1
3 2
-
2 1
2 | 3 L g)
3 2
T 2 (. 2) > X
1 =
(a) 2’ 3)
(i, 277) y 37
> 2

(c)

FIGURE 11.27 The steps in graphing the
cardioid » = 1 — cos 8 (Example 1). The
arrow shows the direction of increasing 6.
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y
0 |cosf r=*2Vcosb Y r*=4cosb
0 1 +2
. IR T R
6 2 ) )
S T 0 '
4 1 V2
+ T 1 ~
=3 5 +1.4
+ T / \
) 0 0 Loop for r = -2V cos 8, Loop forr =2V cos 0,
_T T _T m
(a) 2 =0 =73 2 =9 =7

(b)

FIGURE 11.28 The graph of 7> = 4 cos #. The arrows show the direction
of increasing 0. The values of r in the table are rounded (Example 2).
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r? = sin 26

No square roots of

l negative numbers

r= +Vsin 20

) (1

\ * parts from

| >0
3 square roots

0 ™ T
2

N A

(c) y

A

1k
r=—Vsin 260

T

r2 = sin 26

> X

FIGURE 11.29 To plot» = f(0) in the

Cartesian rf-plane in (b), we first plot
r? = sin 26 in the r*#-plane in (a) and then

ignore the values of 6 for which sin 26 1s
negative. The radii from the sketch in (b)
cover the polar graph of the lemniscate in

(c) twice (Example 3).
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11.7

Areas and Lengths in Polar
Coordinates
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0,

FIGURE 11.30 To derive a formula for
the area of region OTS, we approximate the
region with fan-shaped circular sectors.
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> =

dA = 1124
P(r, 0)

do

> X

O

FIGURE 11.31 The area differential dA4
for the curve ¥ = f(6).
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Area of the Fan-Shaped Region Between the Origin and the Curve

= f(0),a=6=
a= (L2,
(04 2 .

This is the integral of the area differential (Figure 11.31)

dA = 3> do = % (f0)) d6.
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r=2(1 + cos )

FIGURE 11.32 The cardioid in Example 1.
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> X

FIGURE 11.33 The area of the shaded
region is calculated by subtracting the area
of the region between r| and the origin
from the area of the region between r, and

the origin.
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A

Area of the Region 0 = r(0) = r = r,(0), o

a="Lzao— ["Lrrae= [71
L2 L 2! 2

0=p

—

ryt — rlz) do (1)
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y Upper limit
A
rp=1-—cos@ 0 =m/2

/r2=1

> X

Lower limit
0 =—-m/2

FIGURE 11.34 The region and limits of
integration in Example 2.
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Length of a Polar Curve
If » = f(6) has a continuous first derivative for « = 6 = B and if the point

P(r, 0) traces the curve r = f(0) exactly once as 0 runs from « to B, then the

length of the curve is
[ G
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> <

r=1—cosé6

> X

FIGURE 11.35 Calculating the length of
a cardioid (Example 3).
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11.6

Conic Sections
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DEFINITIONS A set that consists of all the points in a plane equidistant from
a given fixed point and a given fixed line in the plane is a parabola. The fixed
point is the focus of the parabola. The fixed line is the directrix.
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Circle: plane perpendicular Ellipse: plane oblique Parabola: plane parallel Hyperbola: plane cuts
to cone axis to cone axis to side of cone both halves of cone

(a)

Point: plane through Single line: plane Pair of intersecting lines
cone vertex only tangent to cone
(b)

FIGURE 11.36 The standard conic sections (a) are the curves in which a plane cuts a double cone. Hyperbolas come in two parts,
called branches. The point and lines obtained by passing the plane through the cone’s vertex (b) are degenerate conic sections.
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The vertex lies

halfway between
. . p
directrix and focus. & 7
Directrix: y = —p O(x, —p)

FIGURE 11.37 The standard form of the
parabola x* = 4py, p > 0.
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y y
Directrix 0 0 Directrix
xX=-p X=p
Vertexx _Vertex

> X

(a) (b)
FIGURE 11.38 (a) The parabola y? = 4px. (b) The parabola y> = —4px.
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Focus Center Focus |\ Vertex

@ @ / ®

Focal axis

Vertex

FIGURE 11.39 Points on the focal axis of
an ellipse.
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DEFINITIONS  An ellipse is the set of points in a plane whose distances
from two fixed points in the plane have a constant sum. The two fixed points

are the foci of the ellipse.
The line through the foci of an ellipse is the ellipse’s focal axis. The point on

the axis halfway between the foci is the center. The points where the focal axis
and ellipse cross are the ellipse’s vertices (Figure 11.39).

Copyright © 2010 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Slide 11 - 64



FIGURE 11.40 The ellipse defined by the
equation PF; + PF, = 2a is the graph of
the equation (x*/a?) + (y?/b?) = 1,

where % = g% — c2
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(0, -3)

FIGURE 11.41 An ellipse with its major
axis horizontal (Example 2).
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Standard-Form Equations for Ellipses Centered at the Origin

x? y2
Foci on the x-axis: — +—= =1 (a > b)
a b
Center-to-focus distance: ¢ = a® — b?

Foci: (Z£c, 0)
Vertices: (=+a, 0)

x2 .Vz
Foci on the y-axis: —5+— =1 (a>b)
b a
Center-to-focus distance: ¢ = Va? — b?

Foci: (0, £c¢)
Vertices: (0, +a)

In each case, a is the semimajor axis and b is the semiminor axis.
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DEFINITIONS A hyperbola is the set of points in a plane whose distances
from two fixed points in the plane have a constant difference. The two fixed
points are the foci of the hyperbola.

The line through the foci of a hyperbola is the focal axis. The point on the
axis halfway between the foci is the hyperbola’s center. The points where the
focal axis and hyperbola cross are the vertices (Figure 11.42).
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Vertices

Focus / . \ focus

Center /

Focal axis

FIGURE 11.42 Points on the focal axis of
a hyperbola.
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FIGURE 11.43 Hyperbolas have two
branches. For points on the right-hand
branch of the hyperbola shown here,

PF, — PF, = 2a. For points on the left-
hand branch, PF>, — PF; = 2a. We then

leth = V2 — a’
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FIGURE 11.44 The hyperbola and its
asymptotes in Example 3.
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Foci on the x-axis: x_i — y—i =1
a b
Center-to-focus distance: ¢ = Va? + b2
Foci: (%c, 0)
Vertices: (+£a, 0)
Asymptotes: Z—z — Z—z =0 or y= :I:%x

Standard-Form Equations for Hyperbolas Centered at the Origin

Notice the difference in the asymptote equations (b/a in the first, a/b in the second).

J’Z x?
Foci on the y-axis: — — — =1
Y 2 Bl
Center-to-focus distance: ¢ = Va? + b?
Foci: (0, £¢)
Vertices: (0, +a)
2 2
LY Xt _4a
Asymptotes: 2 3 0 or y b

Copyright © 2010 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Slide 11- 72




11.7

Conics In Polar Coordinates
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DEFINITION
The eccentricity of the ellipse (x*/a®) + (y%/b?) = 1 (a > b) is
¢ Va* - b?
] a

The eccentricity of the hyperbola (x%/a*) — (y%/b?) = 1is

_c _ Va? + b?

e — a a .
e =1.

The eccentricity of a parabola is
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> =

Directrix 1 Directrix 2
_ _a _4a
r="% b Y=

> X

W

FIGURE 11.45 The foc1 and directrices
of the ellipse (x%/a?) + (y%/b?) = 1.
Directrix 1 corresponds to focus F'; and
directrix 2 to focus F5.
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Directrix 1 y Directrix 2

= 4 (= a
€

>
2

<l
<(C = ae—z»\

FIGURE 11.46 The foci and directrices
of the hyperbola (x*/a?) — (y?/b?%) = 1.
No matter where P lies on the hyperbola,
PFl — €'PD1 aIldPF2 — €‘PD2.
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In both the ellipse and the hyperbola, the eccentricity is the ratio of the distance be-
tween the foci to the distance between the vertices (because c/a = 2¢/2a).

distance between foci
distance between vertices

Eccentricity =
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The “focus—directrix” equation PF = e * PD unites the parabola, ellipse, and hyperbola
in the following way. Suppose that the distance PF of a point P from a fixed point F (the fo-
cus) is a constant multiple of its distance from a fixed line (the directrix). That is, suppose

PF = ¢-PD, (4)

where e 1s the constant of proportionality. Then the path traced by P is
(a) aparabolaife =1,

(b) an ellipse of eccentricity eife < 1, and

(c) ahyperbola of eccentricity eife > 1.
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FIGURE 11.47 The hyperbola and
directrix in Example 1.
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Directrix
LD
Focus at
origin
> X
k
x=k

FIGURE 11.48 If a conic section is put in
the position with its focus placed at the
origin and a directrix perpendicular to the
initial ray and right of the origin, we can
find its polar equation from the conic’s
focus—directrix equation.
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Polar Equation for a Conic with Eccentricity e

_ ke
1+ ecosB’ (3)

where x = k > 0 is the vertical directrix.

r
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ke ke

r=1+ec059 er—ecosB

Focus at origin
> X

Focus at origin

)|
/

i

Directrix x = k Directrix x = -k
(a) (b)
_ ke B ke
F= — f=—
]l +esinf 1 —esin@
y y )
A M Focus at origin
Directrix y = k g
Focus at /
origin ¢
Directrix y = —k

() (d)

FIGURE 11.49 Equations for conic sections with
eccentricity e > 0 but different locations of the directrix.
The graphs here show a parabola, soe = 1.
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Directrix
x=k

Focus at
Center origin

> X

k4

A

oQ

FIGURE 11.50 In an ellipse with
semimajor axis a, the focus—directrix
distance is k = (a/e) — ea, so

ke = a(l — €?).
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Polar Equation for the Ellipse with Eccentricity ¢ and Semimajor Axis a

_a(l — e?)
1+ ecosh (6)

v
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> X

O

FIGURE 11.51 We can obtain a polar
equation for line L by reading the relation

ro = rcos (6 — 6p) from the right triangle
OPyP.
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The Standard Polar Equation for Lines

If the point Py(ro, 8p) is the foot of the perpendicular from the origin to the line
L,and ro = 0, then an equation for L is

rcos (0 — 0y) = ry. (7)
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FIGURE 11.52 We can get a polar
equation for this circle by applying the
Law of Cosines to triangle OPyP.
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EXAMPLE 5  Here are several polar equations given by Equations (8) and (9) for circles
through the origin and having centers that lie on the x- or y-axis.

Center Polar
Radius (polar coordinates) equation
3 (3,0 r = 6cos6
(2, 7/2) r = 4sin6
1/2 (—1/2,0) r = —cos 6
1 (—1,7/2) r = —2sinf
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